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ABSTRACT 

Suppose G is a group of measurable transformations of a c,-finite measure 

space (X, ..4, m).  A set A E .4 is weakly wandering under G if there 
are elements 9- E G such that the sets 9,A, n = 0 ,1 , . . . ,  are pairwise 
disjoint. We prove that the non-existence of any set of po6itive measure 
which is weakly wandering under G is a necessary and sufficient condition 
for the existence of a G-invariant, probability measure defined on .4 and 

dominating the measure m in the sense of absolute continuity. 

1.  I n t r o d u c t i o n  

Two lines of  work concerning the  existence of invar iant  measures  lead  to  the  

resul ts  of th is  paper .  

A) In ergodic  theo ry  the  p rob lem is fo rmula ted  as follows. 

Given a g roup  G of measurab le  t r ans fo rmat ions  of a a - f in i te  measure  space 

(X,~4, m) ,  f ind necessary  and  sufficient condi t ions  for the  exis tence of  a G- 

invar iant ,  p robab i l i t y  measure  # defined on ,4 and  domina t ing  m in the  sense 

of abso lu te  cont inu i ty  (see [4, p. 81]). I t  is usual ly  assumed  tha t  the  measure  m 
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is G-quasi-invariant or, equivalently, that every transformation g E G is nonsin- 

gular. The measure # is then required to be equivalent with m. 

In this setup the problem was solved by Hopf [5] for the case when G is a 

cyclic group and then generalized by Hajian and Ito [3] to arbitrary groups of 

nonsingular transformations. Hopf's condition states that X is not equivalent by 

countable decomposition into measurable pieces with any measure theoretically 

proper subset of itself. The condition of Hajian and Ito excludes the existence of 

weakly wandering sets of positive measure. 

B) A more general approach to the problem is to assume that only a group 

G of bijections of a set X and a G-invariant a-algebra A of subsets of X are 

given, and then search for "purely combinatorial" conditions for the existence of 

an arbitrary G-invariant probability measure it defined on A (see [10, p. 136]). 

Tarski found such conditions in the case when ~t is only required to be finitely 

instead of countably additive (see [9, §16]). Chuaqui [2], who was apparently un- 

aware of Hajian-Ito's paper, tried to generalize Tarski's results to the countably 

additive context. In particular, using completely different ideas, he rediscovered 

a version of the Hajian-Ito theorem. 

It is worth noting that even ill relatively simple cases when ,4 is, say, countably 

generated and contains all singletons, it may still happen that it carries no count- 

ably additive, probability, nonatomic mea.sure at all, even without the additional 

requirement of G-invariance. So, natural necessary conditions for the existence 

of an invariant measure have the form: "A carries a measure m satisfying some 

additional properties" (however, see Section 4). In the case of Chuaqui's theorem 

these consist of Hopf's condition and the requirement that m is G-quasi-invariant. 

Chuaqui (quoted in [10, Question 9.13, p. 137]) conjectured that the latter 

may be dropped. In [11] it was proved that this can be done in the case when `4 

is the a-algebra of all subsets of X. 

The aim of the present paper is to prove that Chuaqui's conjecture is true 

for arbitrary a-algebras and to generalize at the same time also the Hajian- 

Ito theorem . It is showed that if a G-invariant a-algebra A carries a a-finite 

measure m satisfying Hopf's condition (in fact, Hajian-Ito's condition suffices), 

then there exists a G-invariant, probability mea.sure defined on `4 and dominating 

m (Theorem 3.1). 
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2. De f in i t i ons  and  pre l iminar ies  

Suppose that G is a group of bijections of a set X. 

A a-algebra .4 of subsets of X is called G-invariant if gA E .4 whenever g E G 

and A E .4, where gA denotes the image of A under g. If m is a (countably 

additive, non-negative, non-zero) a-finite measure defined on .4 (i.e. (X,.4,  m) 

is a a-finite measure space) and .4 is G-invariant, then we say that G is a group 

of measurable transformations of the space (X, .4, m). 

Suppose that  .4 is a G-invariant a-algebra of subsets of X.  

Two sets A, B E `4 are called countably G-equidecomposable in `4, A '~oo B, 

if there is a partit ion of A into countably many sets A,, E `4, n E N = {0, 1 , . . .} ,  

and elements g,, E G such that the sets g,,A,, form a partit ion of B. 

Following [2] we call a set A E `4 G-negligible if X contains pairwise disjoint 

subsets A,, E .4, n E N, with each An "~oo A. 

Let NG consist of all G-negligible elements of .4. 

We call a set A E .4 weakly wandering under G if there exist elements g ,  E G, 

n E N, such that  g ,A  M g,nA = $ for n ~ m. 

Let WG consist of all elements of .4 weakly wandering under G. 

Clearly, WG C_ NG. 

Suppose that m is a measure on `4. 

Sets in ,4 will be called measurable. If p is another measure on `4, then we say 

that m is absolutely continuous with respect to p, m << p, if m(A) = 0 whenever 

p(A) = 0 for all A E `4. If m << p and p << m, we say that m is equivalent with 

p,m----p. 

We say that the measure m is G-quasi-invariant on a set Z E `4, if m(A) = 0 

implies m(gA) = 0 for every A E `4, g E G such that A C_ Z and gA C_ Z. We 

say that  m is G-quasi-invariant if it is G-quasi-invariant on X. We say that  m is 

G-invariant if m(gA) = re(A) for every g E G and A E .4. 

A set I C .4 is called a a-ideal in .4 if it is closed under countable unions and 

taking subsets in .4. In particular, if v is a measure on .4, then the collection 

Iv = {A E .4 : v(A) = 0} of all v -null sets is a a-ideal in `4, called the a-ideal of 

the measure v. 

A a-ideal I in `4 is called a-saturated in .4 if there is no uncountable family of 

pairwise disjoint sets in A\ I .  

It is well known that  if I is the a-ideal of a a-finite measure on .4, then it is 

a-saturated in .4. 
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We shall need the following folklore-like result: 

PROPOSITION 2.1: Suppose that I and J are a-ideals in .A, I C_ J and I is 

a-saturated in .A. 

Then there exists a set Y E .4 such that X \  Y E J and for every E E A, E E J 

i f f E N Y  E I. 

Proof: Let/C be a maximal pairwise disjoint family of sets in Y\I .  Since I is 

a-saturated, E is countable. Hence U/C E J and it suffices to let Y = X \  U E. 

I 

For Z E .A let Ia(Z)  be the a-ideal in .,4 defined by: 

Ia (Z)  = {A E .A: m(9a n Z) = 0 for every g E G}. 

It will later be useful to refer to the following easy observation. 

PROPOSITION 2.2: If G is a countable group of measurable transformations of a 

a-finite measure space (X, A, m) and re(Z) > O, the,, to(Z) is the a-ideal of a a-  

quasi-invariant probability measure rn' oi2 ,A. In particular, Ia( Z ) is a-saturated 

i nA .  

Proof'. Without loss of generality assume that re(Z) = 1. Let G = {9,,: n E N} 

and define 

m ' ( a )  = Z 2 - ~  m ( 9 . a n Z ) ,  i 
hEN 

The existence of a G-invariant probability measure # on .A with ra <</~ clearly 

implies that m vanishes on all G-negligible sets in .4. The latter property of m 

is a possible formulation of Hopf's condition mentioned in Seetion 1. Hajian and 

Ito [3] proved that the seemingly weaker condition of the non-existence of sets of 

positive m-measure weakly waaxdering under G already suffices for the existence of 

a G-invariant, probability measure t* - m, provided that m is G-quasi-invariant. 

We shall later use the following consequence of Hajian-Ito's result. 

PROPOSITION 2.3: Let G be a group of measurable transformations of a a-finite 

measure space (X,.4, m) and suppose that m vanishes on all measurable sets 

weakly wandering under G. Then it vanishes also on all measurable G-negligible 

sets. 

Proof: Take an arbitrary A E Na. By the definition of "oo, there is a countable 

subgroup/at of G such that A E Nn.  Let m' be a H-quasi-invariant, probability 
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measure on .A with Ira, = I n ( X ) ,  whose existence is guaranteed by Proposition 

2.2. 

Note that  WG C_ Ira implies WH C_ Ira,. So by Hajian-Ito's theorem there 

exists a H-invariant probability measure p - m'. Then since A E NH, p(A)  = 

0 = m' (A) ,  which in turn implies that re(A) = O. | 

Hajian-Ito's paper [3] contains an extensive bibliography of the subject. Two 

more, particularly elegant proofs of the implication "m is G-quasi-invariant and 

Na C Im ~ there exists a G-invariant probability measure p = m" can be found 

in [81 and [71. 

3. T h e  m a i n  r e s u l t s  

Our main result frees Hajian-Ito's theorem from its unnecessary assumption that 

all transformations are non-singular. 

THEOREM 3.1: Let G be a group of measurable transformations of a ~-Kuite 

measure space (X, .4, m). 

Then the fo//owing conditions are equivalent: 

(i) There exists a G-invariant, probability measure p defined on A such that 

m < < p .  

(ii) There does not exist any set of positive measure which is weakly wandering 

under G. 

Proof." We will concentrate on the proof that (ii) -* (i). 

So assume that  W a  C_ In .  

This clearly implies that  W a  C_ I a ( X ) .  Note also that  if p is a measure on ,4 

with I t = IG(X) ,  then m << p. Hence by Hajian-Ito's theorem, the proof will 

be completed as soon as we establish the following 

CLAIM: IG(X) iS the a-ideal o f a  G-quasi-invariant, ~r-lYmite measure u on ,4. 

We split the proof of the claim into a series of lemmas. The first one shows 

how to construct G-quasi-invariant measures from measures which are G-quasi- 

invariant on certain specific subsets of X. 

LEMMA 3.2: I f  m is G-quasi-invariant on a set Z of  positive measure and the ~- 

ideal IG( Z ) is a-saturated in A, then there exists a G-quasi-invariant, probability 

measure v on .A with Iv = IG( Z). 
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Proof of Lemma 3.2: Let K: be a maximal collection of measurable, pairwise 

disjoint sets with the property that for each D E E there exists g E G such that 

gD C Z and 0 < m(gD) < ~ .  

Since the a-ideal Iv(Z)  is a-saturated, K: is countable. So let K ~, = {Dk} and 

for each k fix hk E G with hkDk C_ Z and 0 < m(hkDk) < ~ .  

Define 

z,(B) = ~ m(hk[B fq Dk]) for B E ,4. 
k 

Clearly, t, is a measure on A. 

To prove the G-quasi-invariance of l, it is enough to show that I~ = Ia(Z). 

The inclusion "_"  is obvious. To see the converse, take an arbitrary B E Iv. 

Note that the maximality of the collection K: implies that B\  Uk Dk E Ia(Z). 

Hence it suffices to prove that B tq Dk E Ia(Z) for every k. 

So fix arbitrary k and g E G. 

Note that: 

g[B n Dk] n z c gh'~'[hk[B n Dk] n hkg-  Z] ¢_ Z. 

But m(hk[B N Dk]) = 0 and hk[B f3 Dk] C_ Z, so by the G-quasi-invariance of m 

on Z, m(g[B n Dk] n z )  = o. 
Finally, the measure v is a-finite since v ( X \  Uk Ok) = 0 and v(Dk) = m(hkDk) 

< ~ for every k. To complete the proof replace v by an equivalent probability 

measure. 1 

The next lemma gives a useful reformulation of the claim. 

LEMMA 3.3: The following conditions are equivalent: 

(i) There exists a G-quasi-invariant, a-finite measure t, on A such that I .  = 

zG(x). 
(ii) The a-ideal Ia(X)  is a-saturated in .4. 

Proof: Obviously, (i) ~ (ii). To prove that (ii) ~ (i), use Proposition 2.1 with 

I = IG(X) and J = I m  to find a set Y E ,4 such that m ( X \ Y )  = 0 and m 

is G-quasi-invariant on Y. Notice that IG(X) = IG(Y), so the existence of v 

immediately follows from Lemma 3.2. | 

Note that by Proposition 2.3, NG C L,,. Hence, in view of the preceding 

lemma, to complete the proof of the claim it suffices to establish the following. 
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LEMMA 3.4: If NG C_ Ira, then the a-ideal IG(X) is a-saturated in .4. 

ProoF: Suppose, towards a contradiction, that there exist uncountably many 

pairwise disjoint sets At E .4 with associated functions gt E G such that m(gtAt) 

> 0, for each t E T. 

Since the measure m is a-finite, there exists a countable set T0 C T such that 

m(g,A,\ 0 g.A°) = 0 for every t E T. 
°ET0 

Let 

Co = 0 g,A°. 
sET0 

Proceed by induction to define measurable sets Cm and countable, pairwise 

disjoint subsets Tn of T keeping the following conditions satisfied for every n E N: 

c. = O 
sET. 

(2) rn(g,A,\Cm) = 0 for every t E T \  0 Tk. 
k<n 

Finally pick up an arbitrary to E T \  LJ,es T,, and let 

Coo = g,0 A,o N N Cm. 
mEN 

By (1), Coo is for every n E N countably G-equidecomposable in .4 with a 

subset of U,¢T. A,- 

Hence Coo E NG. 

But it easily fonows from (2) that rn(Coo) > 0 contradicting the assumption 

that NG C In.  I 

This completes the proof of the claim. 

By the remarks preceding the formulation of the claim, this completes also the 

proof of Theorem 3.1. I 

* I owe this proof to Marcin Penconek who simplified the much more complicated 
original argument. 
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Let us note that the above proof gives a G-invariant measure # which is the 

least, in the sense of <<, G-invariant, a-finite measure on A that dominates the 

measure m. This is due to the fact that /~ C_ I n ( X )  = It,, whenever v is a 

G-invariant, a-finite measure on ,4 such that m << v. 

We close this section with an explicit formulation of the positive answer to 

Chuaqui's question ( see [ 10, Question 9.13, p. 137]), which follows immediately 

from Theorem 3.1. 

Tltv.OREM 3.5: Let G be a group of bijections of a set X and A a G-invariant 

a-algebra of subsets of X .  

Then the following conditions are equivalent: 

(i) There exists a G-invariant probability measure on ,4. 

(ii) There exists a probability measure on ,4 that vanishes on Na.  

4. Remarks  

Tarski~s work on finitely additive invariant measures motivates the question, 

whether condition (ii) in Theorem 3.5 can be replaced by the seemingly weaker 

requirement that X is not G-negligible. 

Chuaqui conjectured that this is the case but he later found a counterexample 

(see [10, Theorem 9.121). 

However, the situation is different when only the groups of Borel automor- 

phisms of standard Borel spaces are considered. 

Nadkarni [6, 3.1, p.215] proved that if G is the group generated by a single Borel 

automorphism of a Polish space X, then the condition X ~ Na is necessary and 

sufficient for the existence of a G-invariaalt, probability measure on the a-algebra 

B of Borel subsets of X. 

A. S. Kechris (private communication) has pointed out that the above result, 

extended in a straightforward manner to an arbitrary countable group G of Borel 

automorphisms of X and then, by continuity, to all an arbitrary Polish group G 

acting continuously on X, combined with a recent result of H. Becket [1], which 

implies that Borel actions of Polish groups on Polish spaces are Borel isomorphic 

to continuous ones, has the following immediate consequence: 

If X is a Polish space, G is a Polish group and the function (g, x) ~ gx from 

G x X to X is Borel measurable, then the following conditions are equivalent: 
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(i) There exists a G-invariant probability measure on the a-algebra B of Borel 

subsets of X. 

(ii) X is not G-negligible. | 

There is, however, no hope to generalize this still further to arbitrary group G 

of Borel automorphisms of X, as the following example shows. 

PROPOSITION 4.1: Let G be the group of all Bore] automorphJsms g of a Polish 

space X with the property that the set {z E X : gz ~ x) is meager in X.  

Then X is not G-negligible but there is no G-invariant, probability measure 

on the a-algebra B of Bore1 subsets of X .  

Proof.." It is not difficult to prove that NG coincides with the collection of all 

meager Bord subsets of X. Hence X ¢ Na and i fp  was a G-invariant, probability 

measure on B, then it would vanish on all meager Borel sets. But this contradicts 

the well-known fact, that every probability measure on B is concentrated on a 

meager set. II 
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